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The vast majority of enzyme-catalyzed dehydrations involve 
substrates with the departing hydrogen and hydroxyl group 
situated a and 8, respectively, to a carbonyl or an imine group.1 

One exception to th's motif is the reaction catalyzed by imidazole 
glycerol phosphate (IGP, 1) dehydratase,2 an enzyme from the 
histidine biosynthesis pathway3-4 (Scheme I). Violation of a 
mechanistic trend poses fundamental questions regarding enzyme 
structure and function. For this reason and because IGP 
dehydratase plays a key role in the biosynthesis of an essential 
amino acid (and therefore is a logical target for rational inhibitor 
design), a thorough study of this enzyme has been initiated. 

A variety of mechanisms for the IGP dehydratase reaction, 
some involving enol 3, can be envisioned. If 3 were an 
intermediate, ketonization might be enzyme-catalyzed10 or 
spontaneous; however, only in the former case is a discreet 
stereochemical outcome expected. As an initial test of the 
mechanism of the Escherichia coli IGP dehydratase reaction, we 
have determined the overall stereochemical course of the con
version of (2/?,35)-IGP (D-erythro-lGP]) to imidazole acetol 
phosphate (IAP, 2). 

D-ery<fcro-[3-2H]IGP ([3-2H]I) was prepared enzymatically 
(Scheme II) from D-(-)-[3-2H]ribose-5-phosphate (4). The latter 
was obtai ned from diacetone- D-glucose via oxidation to the ketone, 
which was reduced with NaB2H4." Following selective depro-
tection,12 C-6 of the resulting [3-2H]glucose derivative was 
removed by a sequence of oxidation with NaIO4 and reduction 
with NaBH4.

13 Selective phosphorylation14 and hydrolysis of 
the remaining acetonide gave 4, which was converted to 5-[3-
2H]phosphoribosyl 1-pyrophosphate ([3-2H]PRPP) with PRPP 
synthetase. [3-2H]I was produced from [3-2H]PRPP by incu
bation with cell-free extracts of E. coli highly enriched in the 
enzymes that catalyze the first five steps of histidine biosynthe
sis,31516 and it was purified by ion-exchange chromatography. 

For analysis of [3-2H|]2 by NMR spectroscopy, the IGP 
dehydratase reaction was coupled to the next reaction in the 
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histidine pathway, catalyzed by MsC-encoded IAP transaminase 
(Scheme III). Since the E. coli hisB gene encodes a bifunctional 
protein exhibiting both histidinol phosphate phosphatase and IGP 
dehydratase activities,18 the ultimate product was (2S)-histidinol 
(5).19 

[3-2H]I was incubated with the coupled enzyme system, and 
labeled 5 was purified by ion-exchange chromatography. The 
2H NMR spectrum of 5 derived from [3-2H] 1 is shown in Figure 
lb. A single C-3 deuteron resonance is observed. In a com
plementary experiment, unlabeled IGP was incubated with the 
HisB and HisC proteins in a 2H20-based medium. The 2H NMR 
spectrum of the resulting 5 is shown in Figure Ic. This spectrum 
exhibits two strong signals, one for the C-2 deuteron, and the 
other for a deuteron at C-3. In order to assign the C-3 deuteron 
signals (which clearly appear at unique chemical shifts) in Figure 
1, a reference sample of (25*,35*)-[3-2H,]5 was synthesized.21 

The 2H signal in the spectrum of the reference sample (Figure 
la) is clearly distinct from that of 5 made from [3-2H]I (Figure 
lb), but taking into account the isotope effect25 owing to 2H at 
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Figure 1. 2H NMR spectra (76.728 MHz) of [2H]histidinol (5) in CH3-
OH. The spectra are referenced to a CDCl3 external standard, (a) 
Synthetic (2S",3S*)-[3-2H,]5; (b) (2S,3/?)-[3-2H,]5, generated enzy-
maticallyfrom [3-2H]IGP(I) in 1H2O;(c)(2S,3S>[2,3-2H2]5,generated 
enzymatically from unlabeled 1 in 2H2O; (d)(2S)-[2,3,3-2H3]5, generated 
enzymatically from unlabeled 1 in 2H2O but using minimal IAP 
transaminase. 

C-2, it matches well the C-3 2H signal in Figure Ic. As a control, 
the 2H NMR spectrum of [2,3,3-2H3]S (from incubation of 
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unlabeled IGP in a mixture that included minimal IAP trans
aminase, thus permitting complete exchange of the C-3 protons 
of IAP) is portrayed in Figure Id. Allowing for the double 2H 
isotope effect, the chemical shifts of the C-3 deuteron signals are 
consistent with the assignments in the other spectra. 

By comparison of the 2H NMR spectrum of the synthetic 
standard (Figure la) with those of the enzymatically produced 
histidinol samples, it is apparent that (a) the "new" hydrogen at 
C-3 of IAP comes from the aqueous medium. It is also clear that 
(b) the IGP dehydratase reaction is highly stereoselective and (c) 
proceeds with inversion of configuration at C-3. The high 
stereoselectivity of the IGP dehydratase reaction is inconsistent 
with the release of enol 3 into the solution. Whether there is an 
enol intermediate that is ketonized stereoselectively by IGP 
dehydratase remains to be determined on the basis of additional 
experiments under way in our laboratory. 
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